Assembly Instructions
Technical training seminars are available through Rice Lake Weighing Systems. Course descriptions and dates can be viewed at www.ricelake.com or obtained by calling 715-234-9171 and asking for the training department.

© 2007 Rice Lake Weighing Systems. All rights reserved. Printed in the United States of America.
Specifications subject to change without notice.
Version 2.1, February 2007
This manual is intended for use by technicians responsible for installing and servicing the SURVIVOR® OTR series truck scale. The OTR truck scale is designed so that on-site installation time is reduced as much as possible. A well-organized, experienced installation crew should be able to install a standard 70' x 11' OTR truck scale in one day.

NOTE: This booklet covers the OTR steel deck and concrete deck flat top truck scale installation procedures. Use these instructions as general installation guidelines unless the engineering drawings furnished with your scale differ from the instructions in this booklet. Engineering drawings furnished with your scale always take priority over these general installation guidelines.

Refer to the engineering drawings furnished with the scale for all component numbering sequences.

1.0 Installation

The modular sections of the OTR series truck scale are shipped pre-assembled and ready to be placed into position on temporary setting blocks using a crane.

The deck modules are first connected and positioned on setting blocks. Next, the load cell mounts are installed and anchored into final position.

Then, run the electrical wiring to the J-box through conduit. The weighbridge is lowered onto the load cell mounts. All electronic equipment is then connected to finish the installation.

The general assembly order is summarized below:

1. Set deck modules into position on setting blocks.
2. Install load cell mounts in pockets and anchor bolts in baseplates.
3. Run cabling and connect electrical wiring to J-box.
4. Pour, finish, and seal (concrete deck).
5. Connect indicator and peripheral devices.

1.1 Foundation Slab Cure Period

Standard concrete reaches full strength after a 28-day curing period. At seven days, standard concrete reaches approximately 75% of its maximum strength and can handle moderate loads.

Please refer to ACI318 for additional information regarding concrete curing requirements, and consult your concrete vendor to discuss curing requirements based upon the mix used specifically for your site. Loading of a slab before it reaches 75% of its maximum strength may cause permanent structural damage.

1.2 Assembly Time Estimates

When scheduling installation for a typical three-module, 70' truck scale, plan for a two-hour minimum crane rental to place the modules into position. A two-man crew, aided by a crane operator, can unload modules from the truck and place them into position in approximately 1 hour.

Mount and load cell installation will require approximately 3 – 4 hours. Electrical wiring is run through conduit and can be done in approximately 2 – 3 hours.

For concrete deck scales, a concrete crew of three or four can normally pour, finish, and seal-cure the concrete deck surface of a 70' scale in 2 – 3 hours. Final wiring connections can normally be completed the same day while the concrete is curing. These estimated times may vary.
1.3 Recommended Equipment and Tools (Steel Deck)

- Crane with a minimum 9000 lb.* capacity
- Four chains or cables (8’ minimum length each) with hooks or clevises
- 3/4" rotary hammer drill
- 3/4" x 24" masonry carbide bit
- One low-profile 4-ton bottle jack
- 5 1/2" setting blocks
- Various thickness shims to level scale
- Torque wrench to 100 ft-lb
- Socket wrenches to 1 1/2" (drive compatible with torque wrench)
- Box end wrenches to 1 1/4"
- Open end wrench set (7/16" – 1 1/4")
- 4’ bubble level
- Small torpedo level
- Hammers, maul, pry bar
- Hand tools for pulling and connecting electrical wiring

* Typical single module weight of 70’ x 11’, three-module truck scale.

1.4 Lifting and Handling (Steel Deck)

Deck modules are lifted (see Figure 1-1) using four chains or cables attached to the four lift lugs mounted on the top of the weighbridge. The lift lugs provide balanced lifting of the modules.

1.5 Temporary Setting Blocks (Steel Deck)

When the deck is level with the approaches, the finished scale has 5 3/4” clearance between the bottom of the weighbridge and the concrete foundation. Most installers use setting blocks that are approximately 5 1/2” high for the initial placement and connecting of the deck modules. Shims are used to level the scale and raise it flush with the approach bulkhead. Setting blocks are only used in the corners of the modules where the load cell mounts are installed. The corners that do not have load cell mount locations do not require setting blocks.

NOTE:
- Figure 1-2 shown for 18” foundation profile.
- When placing modules on setting blocks, place blocks in locations close to, but not at, the pocket (to allow room for mount).

Figure 1-2. Setting Block Measurements (Steel Deck)

NOTE: A set of lifting lugs are provided with the scale and shipped on the last module loaded on the truck at the factory.
1.6 **Recommended Equipment and Tools (Concrete Deck)**

- Crane with a minimum 7000 lb* capacity
- Four chains or cables (8’ minimum length each) with hooks or clevises
- 3/4” rotary hammer drill
- 3/4” x 24” masonry carbide bit
- One low-profile 4-ton bottle jack (20-ton jack required after concrete pour)
- 5 1/2” setting blocks
- Various thickness shims to level scale
- Torque wrench to 100 ft-lb
- Socket wrenches to 1 1/2" (drive compatible with torque wrench)
- Box end wrenches to 1 1/4"
- Open end wrench set (7/16” – 1 1/4”)
- 4’ bubble level
- Small torpedo level
- Hammers, maul, pry bar
- Hand tools for pulling and connecting electrical wiring
- Concrete vibrator (optional)
- Concrete screed board, bull float, hand trowels, edger, and broom
- Long-handled paint roller or spray gun for applying epoxy curing agent

* Typical single module weight of 70’ x 11’, three-module truck scale.

1.7 **Lifting and Handling (Concrete Deck)**

Concrete deck modules are lifted (see Figure 1-3) using four chains or cables attached to the four gussets mounted on the inside of the main beams. The gussets provide balanced lifting of the modules.

Following module final positioning, the gussets are no longer needed and are covered by the final concrete pour.

1.8 **Temporary Setting Blocks (Concrete Deck)**

When the deck is level with the approaches, the finished scale has 5 7/8" clearance between the bottom of the weighbridge and the concrete foundation. Most installers use setting blocks that are approximately 5 1/2" high for the initial placement and connecting of the deck modules. Shims are used to level the scale and raise it flush with the approach bulkhead. Setting blocks are only used in the corners of the modules where the load cell mounts are installed. The corners that do not have load cell mount locations do not require setting blocks.

NOTES:
- Figure 1-5 shown for 18” foundation profile.
- When placing modules on setting blocks, place blocks in locations close to but not at pocket (to allow room for mount).
2.0 Assemble Deck Modules

Deck modules are designated as A, B or C (see Figure 2-1). All two-module scales have an A and C module, while longer scales with more than two modules have one or more B modules.

NOTE: The modules are typically marked as A, B, or C on the end of each module for identification during placement and assembly.

A Module
An A module is an end module and is the first to be placed on setting blocks. The left end is a straight end which is positioned next to the vertical wall of the concrete approach (see Figure 2-1). The right end of the A module contains two pin-connection receptacles that are used to accept the two module-support pins located on the B module.

B Module
The B module is a center module and is similar in design to the A module, with the exception that it has two module-support pins on the left end and two pin-connection receptacles on the right end (see Figure 2-1). The two module-support pins of module B are inserted into the two pin-connection receptacles of module A. Also, the pin-connection receptacles of module B accept the module-support pins from another B module or a C module.

C Module
The C module is also an end module and is the last one placed on setting blocks (see Figure 2-1). The two module-support pins are designed to attach to either an A module for a two-module installation or to a B module for an installation that has more than two modules. The opposite end of the C module is a straight end and is positioned next to the vertical wall of the concrete approach.

Figure 2-1. OTR Deck Modules

Figure 2-2. Weigh Modules Ready for Removal and Installation

Modules have been stacked on the truck for shipping in the order that they are installed (see Figure 2-2). The A module is the top module, followed by any B modules, and the C module is the bottom module.
2.1 Place End Module A
Before lifting the A module from the truck, place four 5 1/2" temporary setting blocks on the concrete foundation at each of the four corners. Also re-measure the overall distance between approaches. The OTR series is undersized 1 1/2". When installed in a 70' opening, there will be a 3/4" gap between the approaches and the scale. Minor adjustments can be made when setting the first module to equally space the scale between approaches.

NOTE: Depending on foundation and cleanout requirements, a different size of setting blocks may be needed. Assembly instruction references an 18" approach profile for a 5 3/4" cleanout. Adjust as needed for your application needs.

Figure 2-3. Module Positioned on Temporary Setting Blocks

NOTE: Position each setting block so that it does not interfere with installation of the load cell mounts.

Place module A with the straight end 3/4" from the concrete bulkhead. With 5 1/2" setting blocks, the deck surface is 1/4"-3/8" from the top of the concrete approach. Square this module with the approach and check that the side-to-side dimensions are the same.

Figure 2-4. Setting Modules in Place

NOTE: Before installing the B module, check that no debris has fallen into the two pin-connection receptacles.

2.2 Place and Attach Adjoining Modules B and C
In a scale with more than two modules, the next module is a B module (see Figure 2-5); if the scale has only two modules, it is a C module. Place two 5 1/2" setting blocks at the corners opposite of the module support pins (load cell mount locations) to support the B module.

Figure 2-5. Module B Installation

Place the B module so that the module-support pins engage with the pin-connection receptacles (see Figure 2-6) of module A and the opposite end rests on the two setting blocks.

Figure 2-6. Pin and Receptacle Interface

NOTE: If the pins do not seat squarely in the receptacles, raise the module slightly, and then reset the module again.

When the B module is in place, remove the cables or chains from the module and install any other B modules or the C module in a similar manner.

The C module is installed in the same way that the B module was installed. The end of the C module should be approximately 3/4" from the approach bulkhead.

The weigh module setup is now complete and the scale is ready to be leveled.
2.3 Raise Deck and Level with Approaches

Use the following steps to raise and level the weigh modules with the concrete approach:

1. Beginning at the approach (left) end of module A, raise the scale deck using low-profile hydraulic jacks. Add shims on the setting blocks until the deck surface is level with the approach. Move to the opposite end of module A, and raise and level this end.

![Figure 2-7. Leveling Deck with Approaches](image)

2. When all four corners of the A module are leveled, check the module for being square with the approach and that it has a 3/4" end clearance from the concrete bulkhead.

3. Move to the B module and continue leveling the weighbridge by leveling the load cell mount end of the B module.

![Figure 2-8. Check Weighbridge for Level](image)

4. Raise, level, and shim any other B modules if they are installed. When the B module or modules are done, continue by leveling the C module in the same manner.

5. When all modules are leveled and shimmed, check the edge alignment with a stringline or a level along one side of the main beam. Also, check the module support pins to see if they are firmly seated in the pin-connection receptacles.

6. As a final check, make sure that the weighbridge end clearance is within specified requirements. The deck is now at its final position and ready for load cell mount installation.

NOTE: If transit is used to level scale, the procedure in Section 2.3 on page 6 could be accomplished while installing shims in Section 3 of the manual.
3.0 Load Cell Mount Installation

Load cell mount components (baseplate, mount blocks, anchor bolts, link, load cell, flexcable, and upper mount blocks) are shipped in the hardware box and need to be assembled while in the load cell pocket. Remove the printed load cell Certificate of Conformance (CC) forms (included with load cells) and store them in a safe place for future reference.

The following sections contain step-by-step instructions on mount installation, including the baseplate, load cells, upper mount blocks (shim and grout), ground straps, and anchor bolts.

3.1 Install Baseplate and Load Cell

Use the following steps for installing the mount baseplate and load cell in the load cell mount pockets:

1. Remove load cell mount components from the packing box and position one set at each mount location.

2. Working with the baseplate first, lower baseplate through pocket opening and onto concrete foundation.

3. Remove cover plate from 90° fitting included with conduit assembly and insert load cell cable through fitting sticking through area where plate was (see Figure 3-2).

4. Thread 90° fitting to the load cell, making sure the cable does not twist. Insert cable through second half of fitting and conduit, then re-install cover plate to 90° fitting. This method prevents connections from being twisted off inside the load cell.

5. Place the load cell link over the end of the cell and install load cell/link assembly onto the top of the baseplate.

6. Apply anti-seize compound to threads of load cell bolts before installing. Torque load cell bolts 50 – 75 ft-lb.

7. Position flexcable so that a loop can be made in it and the end can be attached to the rigid conduit.
3.2 Mount Block and Shim (Groutless) Installation (Option 1)

Use the following procedure for installing mount blocks and shims for leveling.

NOTE: RLWS has a shim plate (PN 67292) available to level scale. Do not exceed over 3/4" of shims combined. If more is necessary, contact RLWS for other options.

1. Apply anti-seize compound to threads of mount block bolts.
2. Install one bolt through welded block into upper mount block.
3. Add or remove shims until radius of block comes in contact with rocker link radius.

4. Install second bolt assembly through blocks and shims, then torque to 55 ft-lb. Repeat process on all load cell pockets.

NOTE: Position the slotted end of shim towards shorter end of load cell pocket. This allows more room to work when adding or removing shims.

5. Recheck the link for any binding or misalignment and ensure that the link is plumb in respect to the upper blocks. Also, check that the link is centered between the side of the link and the upper blocks.

NOTE: If needed, tap the edge of the baseplate with a hammer to make minor adjustments in alignment.

6. Jack the weigh module and remove the setting blocks.
7. Slowly lower the weigh module until it rests on the load cell links.
8. Use an industrial hammer drill to drill a 3/4" hole into the concrete at least 6" deep on one side of the baseplate (see Figure 3-8).

9. Drill a second anchor bolt hole on the opposite side of the baseplate.

Figure 3-5. Sample Shim Dimensions

Figure 3-6. Shim Installation (Option 1)

Figure 3-7. Recheck Link for Binding

Figure 3-8. Drill Anchor Bolt Holes
10. Each mount requires two anchor bolts to prevent longitudinal motion of the baseplate. Anchor bolts (7" x 3/4") with expansion heads are supplied with the scale (see Figure 3-9).

![Figure 3-9. Anchor Bolts with Washers](image)

11. Insert bolts into holes drilled in the foundation.

12. Install one washer and one nut on each anchor bolt. Place a driver pipe on top of the bolt and use the long punch to seat the anchor bolts against the baseplate. Tighten anchor bolt nuts.

![Figure 3-10. Seating Anchor Bolts on Baseplate](image)

13. Attach one end of the ground strap to the upper block.

14. Insert a bolt through the wire terminal on the loose end and thread the bolt into the hole on the baseplate. Tighten the bolt securely with a wrench.

![Figure 3-11. Ground Strap](image)
3.3 Mount Block and Grout Installation (Option 2)

Use the following steps to install mount blocks and baseplate grout:

1. Adjust leveling bolts until radius of block comes in contact with rocker link radius.
2. Jack the weigh module and remove setting blocks.
3. Slowly lower the weigh module until it rests on the load cell links.

NOTE: After the weigh module is lowered into final position, check each load cell mount assembly to ensure that the link is plumb and that there is no binding or misalignment.

4. Use an industrial hammer drill (see Figure 3-8 on page 8) to drill a 3/4” hole into the concrete at least 6” deep on one side of the mount frame.
5. Drill a second anchor bolt hole on the opposite side of the mount frame.
6. Each mount requires two anchor bolts to prevent longitudinal motion of the baseplate. Anchor bolts (7" x 3/4") with expansion heads are supplied with the scale (see Figure 3-9 on page 9).
7. Insert bolts into holes drilled in foundation.
8. Install one washer and one nut on each anchor bolt. Place a driver pipe on top of the anchor bolt and use the long punch to seat anchor bolts against baseplate (see Figure 3-10 on page 9).

NOTES:
- Do not apply excessive force to the anchor bolts—bending of the baseplate could occur.
- When installing anchor bolts, make sure that there is adequate bolt length to extend into the concrete foundation.

9. Attach one end of the ground strap to the upper block.
10. Insert a bolt through the wire terminal on the loose end and thread the bolt into the hole on the baseplate. Tighten the bolt securely with a wrench (see Figure 3-11 on page 9).
11. Erect temporary wooden forms around each baseplate and pour 9000 PSI, non-shrinking, epoxy or cement grout into the forms beneath the baseplate (see Figure 3-12). A funnel with a long tube can be used to pour grout into the forms while working from above the access hole.

12. After pouring the grout, tap the form several times with a hammer to remove any air voids beneath the baseplate; it must have even support from continuous grout contact.
13. Remove the temporary wooden forms when the grout is set (see Figure 3-13). Grout should be allowed to set for at least 24 hours before removing the wooden forms.

14. After grout has hardened, tighten anchor bolt nuts.
Electrical conduit is pre-installed at the factory and only needs to be connected between the modules and from the modules to the junction box (J-box). Following conduit work, load cell cables are routed through each conduit from the load cells to the J-box. All load cell cabling used for this installation comes in the shipping container. The layout pattern for the electrical conduit on a three module truck scale installation is shown in Figure 4-1.

Before the weigh module wiring can be completed, all load cell cables have to be routed through the conduit beginning at the load cell outlet. Use the following steps to route load cell cables through conduit to the J-box:

1. Before routing load cell cables, mark each load cell cable at the end to help identify each load cell.
2. Carefully make a loop in the flex conduit and position the end of the flex conduit close to the end of the rigid conduit.
3. Working from the J-box end, insert a fish tape or similar tool and pull each load cell cable through the rigid conduit until all excess cable is taken in. When all load cell cable is pulled through, insert end of the flex conduit over the end of the rigid conduit and tighten fitting.
4. Wire each load cell to the J-box terminal strip in accordance with the wiring code contained in the Certificate of Conformance.

NOTE: Load cell cable may be cut for best fit. Standard warranty will not be affected.
Once the load cell cable is installed and wired, a concrete deck OTR is ready for the concrete pour. Install the access plates (see Figure 5-1) over each load cell location to prevent concrete from spilling into the load cell access cavities. Also, cover the J-box pocket with cardboard or plastic and apply tape along the top of each frame channel to protect it from concrete splatters.

5.1 Concrete Specifications

4000 PSI concrete (6 bags/yd3) combined with a rebar grid of #4 rebar, 16" on-center each direction is recommended. Optionally, Fibermesh® (or equivalent) can be used in combination with the rebar grid or independently. See assembly drawings in Section 10.0 on page 23 for complete specifications.

Fibermesh is a concrete mixture with the addition of 1.0 to 1.5 lb of fibrillated polypropylene fibers per 1 yd3 of concrete. Uniform dispersion of the fibers throughout the mix prevents surface cracking from plastic shrinkage, replacing the traditional welded wire reinforcing. Fibermesh concrete also provides increased resistance to surface damage from impact and abrasion, and to water migration through the concrete. Fibermesh does not increase the ultimate compressive strength of the concrete. If using Fibermesh, order a 6 bags/yd3 concrete mix and have fibrillated polypropylene fibers added at the redi-mix plant.

Normal quantity of polypropylene fibers in Fibermesh concrete is 1.5 lb/yd3. For maximum protection from shrinkage cracks, abrasion, and impacts, up to 3.0 lb/yd3 of concrete may be added to the mix. If using a brushed final finish, fibers are not be visible in the completed surface.

In climates subject to freeze/thaw cycles, the mix should also contain up to 5 to 8% entrained air.

1. Fibermesh is a registered trademark of Synthetic Industries Corporation.

5.2 Pour and Finish Concrete Deck

The strength of concrete is largely dependent on the water/cement ratio. Adding extra water to make the concrete easier to pour and work reduces the ultimate strength and increases the size and number of shrinkage cracks. Mix the concrete no wetter than a standard 3" slump. To increase flow, consider using an electric concrete vibrator (see Figure 5-2) rather than adding extra water to the mix.

1. Begin pouring at one of the end modules, thoroughly vibrating the concrete to work it into the inside of the main beams and around the shear connectors (see Figure 5-3).

2. Strike off and screed the concrete to further settle the concrete and level the surface (see Figure 5-4).
3. The first module can be bull floated to final level while the second module is being poured (see Figure 5-5). Edge all concrete/metal frame joints.

Figure 5-5. Floating Concrete

4. Pour, screed, float, and edge any remaining modules. After the concrete deck surface has hardened, brush with a broom to provide safe traction.

5. Clean concrete splatters from the painted frame members with a wet sponge before they dry, and before applying a liquid curing agent.

6. Apply liquid curing agent to complete concrete pour and finish (see Section 5.3).

5.3 Moist-Cure Concrete Deck

For proper curing, the surface must be kept moist for seven days. If the top surface is allowed to dry out during this time, the finished surface is prone to unsightly spalling and surface cracking. Hot weather, full sun, and windy conditions all accelerate surface drying.

The easiest way to keep the surface moist for seven days is to roll or spray on an epoxy-based concrete curing solution immediately after final finishing. These epoxy-based curing products are available at contractor-supply companies. They both seal in moisture for slow curing and protect the surface from salt and corrosion.

Some curing agents can have adverse effects on steel surfaces. Please refer to assembly prints for proper curing agents.

Warning

Alternately, the surface can be covered with continuous plastic and kept moist by frequent flooding beneath the plastic for the seven-day cure period.
6.0 Connecting Electronic Equipment

Sixty feet of six-wire homerun cable is supplied for wiring the J-box to the indicator. It is to be run in 3/4" galvanized metal or plastic conduit from the J-box to the indicator. Conduit for this purpose is to be obtained locally. A section of flexible conduit with connector is provided where this cable exits the J-box. Do not run any other electrical cables in or near the conduit to the indicator.

6.1 Indicator to Peripherals

All conduit for cabling from the indicator to remote displays and other peripheral devices is to be obtained locally. Conduit runs may be buried in a trench or secured above ground. Use separate conduit runs for AC power and DC data lines to avoid interference. As a general guideline, run AC and DC cables in separate trenches if possible. When DC data cables must run in the same trench as AC power lines, separate cables as much as possible.

6.2 Single-Point Ground Conductor

A bare 10 gauge solid wire is run from the scale frame to the main AC power earth ground. DC transient protection must be properly grounded to function correctly.

6.3 J-box Connections

Each J-box contains a JB8SPT summing board with DC transient protection devices. A desiccant such as the RLWS Industrial Corrosion Inhibitor (PN 16037) should be added to the J-box enclosure before final closure.

In a truck scale up to 70' long, a single J-box is located in a J-box pocket in the center or B module (see Figure 4-1 on page 11). A summing card mounted within the J-box is used to make all cable terminal connections. All terminal pins are clearly marked as to function.

On scales over 70' long with four or more modules, two or more J-boxes are necessary.

NOTE: Refer to assembly print or foundation plan for J-box location and homerun cable output.

6.4 Electrical Ground Connections

Improper grounding systems on outdoor truck scales often cause corrupted data from ground-loop current flows and costly lightning damage to electronics.

Always strive for a single-point grounding system (see Figure 6-3 on page 16). Do not drive ground rods at the scale location to establish separate earth grounds for the scale. These separate earth grounds do not share the same zero reference as the existing earth ground for the AC power system. This difference in electrical potential invites ground-loop current flow between the separate grounds, often corrupting serial data like RS-232 which depends on a stable zero reference.

In addition, a separate earth ground system at the scale can actually invite lightning or power surge damage:

- A minor powerline surge in the scale house electrical supply should immediately be shunted to ground. If a separate ground system exists at the scale with a lower potential than the main ground, the surge may travel out to the scale ground rod, damaging load cells on its way.
- A nearby lightning ground strike may instantly raise the zero potential of a ground rod at the scale location, while leaving the scale house ground rod unaffected less. That lightning surge now takes the easiest path to the lower-potential ground—through the scale wiring and back to the scale house ground, possibly damaging the indicator on its way.

Therefore, the best grounding system for the scale is the same grounding system used for the incoming AC power system. The 120 VAC power source used to power the indicator is connected to an existing earth grounded rod system at the scale house or other building where the indicator is located. This should consist of a double ground rod system of two 5/8" x 8' copper rods driven 8' deep at the service entrance where the local utility company brings their lines into the building.
The local utility company can test the resistance of the existing ground rods with a clamp-on megohmeter that measures zero resistance. A reading of 3¾ or less is acceptable as a ground. If the test determines that the grounding system is inadequate, the utility company can suggest methods to improve the system. It is crucial that the scale owner authorize and make the recommended improvements to ensure an adequate electrical ground. Do not connect the scale to the AC power supply until the grounding system is adequate.

Be certain each load cell grounding strap is securely connected to the top plate and bottom plate of each load cell mount. Some models have ground straps included to install between modules (see Figure 6-2). These inter-module straps ensure that the entire scale is connected to the same single point ground. There should be metal-to-metal contact with no presence of paint or grout. This strap is designed to channel power surges on the deck around—rather than through—the load cell to ground. These, and all, ground connections must be torqued to a specified value and retorqued at regular service intervals. A thick coating of anti-oxidant grease should be maintained on all ground connections to prevent corrosion.

A separate grounding system conductor must extend uninterrupted from the main service panel ground to the scale to protect load cells and scale wiring from lightning and other transient damage. This ground wire conductor must be an unsheathed #10 copper wire or larger. Run the bare ground wire conductor intact from the AC power ground rod to the scale in a separate trench. Bring the wire up from the trench near the J-box and attach it to the ground lug located in the J-box pocket. This grounds the scale frame to the same single-point ground as the AC power for the indicator.

A ground wire is included to attach the J-box ground lug to the ground lug located in the J-box pocket. Grounding of the J-box is essential for operation of the DC transient protection incorporated into the J-box.

![Figure 6-2. Inter-module Ground Strap](image)
Figure 6-3. Single-Point Grounding Diagram
6.5 Installing Transient Protection

A lightning protection package comes standard on all truck scales. The individual components of this comprehensive package are designed to protect AC and DC portions of the system. The lightning protection package includes:

- DC transient protection included with standard J-box board(s). This DC transient protection handles up to eight load cells. Scales with more than eight load cells require additional J-boxes.
- Self-contained DC transient protection unit in the homerun cable at the indicator.
- 115 VAC uninterruptable power supply/surge protector in the AC line before the indicator.
- Number 10 bare ground conductor cable buried in earth from scale frame to DC transient board at indicator and finally to the AC power ground lug.

NOTE: Serial communications (if used) may also require transient protection to fully protect entire system. A TP-232 DC Transient Protection is suitable protection for serial communications lines. In addition, printers, remote displays, and other devices connected to serial communications should be protected with AC transient protection.

Figure 6-4. Grounding and Transient Protection on OTR Scale
7.0 Trimming and Calibration

The following section provides descriptions and procedures for load cell trimming, scale calibration and serial tag placement.

7.1 Overview and Equipment Required

Load Cell Trimming

Individual load cell signal trimming (equalizing the signal output from each load cell) must be done first along each side of the scale so all cells on a side have equal signal output. Adjustments are somewhat interactive, so each side should be done at least twice.

Once that is done, load cell pairs—one from each side—are trimmed as paired sections until each sectional output is equal. Adjustments to each section should also be done at least twice.

Equipment Required

Both of these trimming operations can be done using a weight cart parked in various locations on the scale. Final verification of equal output trimming, however, requires test weights to be placed on the deck in various locations.

7.2 Trimming Individual Cells

Connect all load cells to the summing board terminals in the J-box, and connect the main interface cable from the J-box to the indicator. Power up the indicator.

Turn all load cell potentiometers (individual and section) in the J-box clockwise so all signals are at full strength. Refer to the J-box instruction manual for proper set-up of jumpers and dip switches prior to trimming, then proceed to individual cell trimming.

Side 1

The first objective is to adjust individual load cells along one side of the scale for equal signal output when equal weight is put on those cells. For convenience, that side of the scale is referred to as side 1. The trimming weight you use is the loaded weight cart.

1. Park the cart as close as possible to side 1 being trimmed with the wheels centered over the end load cell mount (No. 1 in Figure 7-2). Record the indicator reading. Remember that the scale is still uncalibrated, so the indicator readings are simply raw counts rather than weight units.

Figure 7-1. Load Cell Trimming Diagram

Figure 7-2. Trimming Load Cell Number One
2. Move the cart directly over mount No. 2 and record that reading. Move the cart directly over mount No. 3 and record that reading. Move the cart so the wheels are centered directly over mount No. 4 (you may have to turn the weight cart around so all wheels remain on the scale) and record the reading.

3. The lowest reading of the four is the reference cell. Do not change that cell’s signal. Instead use the individual cell potentiometers for the other three cells to reduce those signals to match your reference cell. Remember that you turned all pots to full signal before starting, so you can not increase the signal from any cell; only decrease signal by trimming with the pots.

4. Note that the best trim is always the least trim. If one of the four readings differs from the others by more than 5% of the displayed counts, there is probably a mechanical problem with that load cell mount causing the large difference. Find it and correct it before going on. Check for binding, an out-of-level or misaligned link, or similar problems with the load cell and mount. Do not try to trim down large signal differences with resistance pots — that only adds larger problems later because of interaction between mounts.

5. Park the loaded weight cart over one of the high-reading cells on side 1. Turn that cell’s individual potentiometer until the displayed reading equals your recorded reference cell reading. Repeat for the other two high-reading cells on side 1.

6. As adjustments are somewhat interactive, repeat the process in steps 1 – 5 until all four cells on side 1 read within .1% of each other.

7. Repeat steps 1 – 6 for load cells 5 – 8 on side 2 of the scale.

7.3 Trimming Paired Sections

Now that all individual load cells are trimmed for equal output, pairs of load cells on opposite sides of the scale must be trimmed for equal sectional output. This process is called section trimming.

1. Park the loaded weight cart in the middle of the scale and directly over an imaginary line connecting an end pair of cells (1 and 8 in Figure 7-4). Record the indicator reading.

2. Move the weight cart directly over the next paired cell section (2, 7 in Figure 3) and record the indicator reading. Do the same for the last two paired sections (cells 3, 6 and 4, 5).

3. Choose the lowest reading of the four as your reference section, which is not adjusted. Using the section potentiometers, reload the other three sections in turn and trim the sections to match the reading of the reference section. Recheck section readings a second time as the adjustment made can be somewhat interactive.

4. As a final verification of the load cell trimming, do a final corner check. Place a 1000 lb weight on one corner of the platform and record the raw-count reading on the indicator. Move the weight to all of the other corners in turn and record those readings. The readings should be within .1% of each other.
7.4 Calibration with Test Weights
The calibration procedure can only be done after all trimming as described above has been completed. A qualified scale technician with a test weight truck and the expertise to access the scale indicator’s setup or calibration mode must perform the calibration procedure.

![Figure 7-6. Calibration with Test Weights](image)

Equipment Required
Truck scales are routinely calibrated using 25% of the capacity weight of the scale. Certified Class F test weights equaling at least 12.5% of the scale's capacity are required for calibrating a commercial legal-for-trade truck scale. In addition, some type of weight for a substitution test of an additional 12.5% of the capacity is required. This can be the test-weight truck, bags of sand, or any convenient items easy to load onto the scale. This total calibration weight of 25% of scale capacity (12.5% test weights, 12.5% substitution weight) is required by weights and measures officials for commercial truck scales in most states. Check with your local weights and measures officials for the requirements in your jurisdiction.

Industrial scales not used for legal-for-trade transactions do not require certified test weights. Weight equal to 25% of scale capacity is recommended for calibrating such scales.

See *NIST Handbook 44* for detailed calibration requirements and procedures.

7.5 Serial Tag
The serial tag on an OTR truck scale is found at the end of the scale near the SURVIVOR logo. A duplicate tag is placed inside of the J-box pocket.

![Figure 7-7. OTR Serial Tag Sample](image)

![Figure 7-8. Serial Tag Placement](image)
8.0 Load Cell Replacement

Use the following steps to replace load cells in the OTR truck scale:

1. Position jack on the concrete foundation beneath one of the weighbridge’s main frame members close to the load cell mount. (Allow room for load cell removal and installation.) Raise jack approximately 1/2" and put setting block(s) under the scale deck.

 NOTE: As a safety precaution, always use setting blocks when jacking scale module.

2. Disconnect the load cell terminal connections in the junction box. Disconnect the flex conduit from the rigid conduit at the frame. Pull the load cell cable out of the conduit.

 NOTE: Attach a pull cord to the load cell cable at the junction box before pulling the cable through the conduit.

3. Remove the two load cell bolts and lift out load cell and link assembly.

4. Remove LB connector and flexcable. Install LB connector and flex conduit on new load cell in the same position as was removed.

5. Install link over new load cell. Reinstall load cell and link assembly onto the baseplate. Install load cell mount bolts. Torque bolts to 50 – 75 ft-lb.

6. Pull load cell cable through conduit using pull cord. Make a loop in flex conduit between the load cell and the rigid conduit. Reconnect flex conduit to rigid conduit.

7. Remove setting blocks and lower scale module so that it rests on the link. Check link to verify that it is centered and plum.

8. Connect wiring to terminals in junction box.

 NOTE: RLWS has 1/4" (PN 67293), 1/8" (PN 67294) and 1/16" (PN 67291) shims available to level scale. Do not exceed over 3/4" of shims combined. If more is necessary contact RLWS for other options.
9.0 Vehicle Scale Limited Warranty

Rice Lake Weighing Systems (RLWS) warrants that all RLWS brand equipment and systems properly installed by a Distributor will operate in accordance with written specifications as confirmed by the Distributor and accepted by RLWS. All systems and components are warranted against defects in materials and workmanship for 5 years from date of shipment from the manufacturer. Furthermore, the seller warrants the fabricated weighbridge against faulty workmanship and defective materials for 5 years from date of shipment from the manufacturer.

RLWS warrants that the equipment sold hereunder will conform to the current written specifications authorized by RLWS. RLWS warrants the equipment against faulty workmanship and defective materials. If any equipment fails to conform to these warranties, RLWS will, at its option, repair or replace such goods returned within the warranty period subject to the following:

- Upon discovery by Buyer of such non-conformity, RLWS will be given prompt written notice with a detailed explanation of the alleged deficiencies.
- Individual electronic components returned to RLWS for warranty purposes must be packaged to prevent electrostatic discharge (ESD) damage in shipment. Packaging requirements are listed in a publication, “Protecting Your Components From Static Damage in Shipment,” available from RLWS Equipment Return Department.
- Examination of such equipment by RLWS confirms that the non-conformity actually exists, and was not caused by accident, misuse, neglect, alteration, improper installation, improper repair, or improper testing. RLWS shall be the sole judge of all alleged non-conformities.
- Such equipment has not been modified, altered or changed by any person other than RLWS or its duly authorized repair agents.
- RLWS will have a reasonable time to repair or replace the defective equipment. Buyer is responsible for shipping charges both ways.
- Vehicle scale products are eligible for warranty labor and mileage charges with pre-approval by RLWS Service Department, and only to the limits described in the vehicle scale reimbursement program.
- RLWS will not be liable for the cost of any repairs made by others.

THESE WARRANTIES EXCLUDE ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING WITHOUT LIMITATION WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. NEITHER RLWS NOR DISTRIBUTOR WILL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES.

RLWS AND BUYER AGREE THAT RLWS’ SOLE AND EXCLUSIVE LIABILITY HEREUNDER IS LIMITED TO REPAIR OR REPLACEMENT OF SUCH GOODS. IN ACCEPTING THIS WARRANTY, THE BUYER WAIVES ALL OTHER CLAIMS TO WARRANTY.

SHOULD THE SELLER BE OTHER THAN RLWS, THE BUYER AGREES TO LOOK ONLY TO THE SELLER FOR WARRANTY CLAIMS.

No terms, conditions, understanding, or agreements purporting to modify the terms of this warranty shall have any legal effect unless made in writing and signed by a corporate officer of RLWS and the Buyer.

10.0 Assembly and Foundation Drawings

Figure 10-1. 70' x 11' Concrete Deck OTR Assembly Drawing
Figure 10-2. 70' x 11' Steel Deck OTR Assembly Drawing
Figure 10.3. 10-70’x11’ OTR Pier Foundation Print
Figure 10-4. 70' x 11' OTR Slab Foundation Print